
Citation: Toro-Ossaba, A.; Jaramillo-

Tigreros, J.; Tejada, J.C.; Peña, A.;

López-González, A.; Castanho, R.A.

LSTM Recurrent Neural Network for

Hand Gesture Recognition Using

EMG Signals. Appl. Sci. 2022, 12,

9700. https://doi.org/10.3390/

app12199700

Academic Editor: DaeEun Kim

Received: 26 July 2022

Accepted: 22 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

LSTM Recurrent Neural Network for Hand Gesture
Recognition Using EMG Signals
Alejandro Toro-Ossaba 1,† , Juan Jaramillo-Tigreros 1,†, Juan C. Tejada 1,2,*,† , Alejandro Peña 3,† ,
Alexandro López-González 2,† and Rui Alexandre Castanho 4,5,†

1 Grupo de Investigación en Inteligencia Computacional y Automática (GIICA), Universidad EIA,
Envigado 055428, Colombia

2 Departamento de Estudios en Ingeniería para la Innovación, Universidad Iberoamericana,
Ciudad de México 01219, Mexico

3 Grupo de Investigación en Información y Gestión, Escuela de Administración, Universidad EAFIT,
Medellín 050021, Colombia

4 Faculty of Applied Sciences, WSB University, 03-204 Dabrowa Gornicza, Poland
5 College of Business and Economics, University of Johannesburg, Auckland Park, P.O. Box 524,

Johannesburg 2006, South Africa
* Correspondence: juan.tejada@eia.edu.co
† These authors contributed equally to this work.

Abstract: Currently, research on gesture recognition systems has been on the rise due to the capabili-
ties these systems provide to the field of human–machine interaction, however, gesture recognition
in prosthesis and orthesis has been carried out through the use of an extensive amount of channels
and electrodes to acquire the EMG (Electromyography) signals, increasing the cost and complexity
of these systems. The scientific literature shows different approaches related to gesture recognition
based on the analysis of EMG signals using deep learning models, highlighting the recurrent neural
networks with deep learning structures. This paper presents the implementation of a Recurrent
Neural Network (RNN) model using Long-short Term Memory (LSTM) units and dense layers to
develop a gesture classifier for hand prosthesis control, aiming to decrease the number of EMG
channels and the overall model complexity, in order to increase its scalability for embedded systems.
The proposed model requires the use of only four EMG channels to recognize five hand gestures,
greatly reducing the number of electrodes compared to other approaches found in the literature. The
proposed model was trained using a dataset for each gesture EMG signals, which were recorded
for 20 s using a custom EMG armband. The model reached an accuracy of to 99% for the training and
validation stages, and an accuracy of 87 ± 7% during real-time testing. The results obtained by the
proposed model establish a general methodology for the reduction of complexity in the recognition
of gestures intended for human.machine interaction for different computational devices.

Keywords: gesture recognition; recurrent neural networks (RNN); long short-term memory (LSTM)

1. Introduction

Hand gesture recognition systems have been improving greatly within the last two
decades, mainly because of the need for more natural and accurate human–computer
interaction systems [1]. Furthermore, Human Computer Interfaces (HCI) are becoming
very important in one field in particular: upper limb prosthesis [2,3]; hands are known for
being one of the most important and functional parts of our body, hence loss of them can
result in a subject notable deterioration of life quality. This is mainly why the literature
is rich in studies aiming for optimum ways to control upper limb active prosthesis [4].
Even with this amount of literature there are some major challenges regarding actual HCI
techniques for upper limb prosthesis control [5], coming first, three of these main challenges
are listed and explained:

Appl. Sci. 2022, 12, 9700. https://doi.org/10.3390/app12199700 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199700
https://doi.org/10.3390/app12199700
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0331-6102
https://orcid.org/0000-0003-1195-3379
https://orcid.org/0000-0001-9441-9280
https://orcid.org/0000-0001-5515-5235
https://orcid.org/0000-0003-1882-4801
https://doi.org/10.3390/app12199700
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199700?type=check_update&version=1

Appl. Sci. 2022, 12, 9700 2 of 21

1. The first challenge involves hand gesture recognition in real-time [6]. Most studies
regarding this topic focus primarily in finding novel algorithm-based methods in order
to achieve high performance rates in gesture recognition. Nevertheless these scores
are obtained in non-real-time tests where factors such as computational efficiency,
window length and system overall performance are not taken in to account [7,8].
Furthermore, this kind of hand gesture recognition methods may be suitable for non-
mobile applications such as sign language recognition [9], but not for active prosthesis
which are mobile and independent systems.

2. The second challenge is to find such a good performance classifier that it can be used
in different types of amputees and still has a good accuracy rate in hand gesture
recognition [10], moreover, the challenge is to find an appropriate classifier that can
deliver good recognition rates in almost every amputee morphology, while keeping
the prediction delay low and the overall system computational needs moderate.

3. The third challenge is to narrow the gap between academic and industrial achieve-
ments. Both of them, at this point, are heading in totally different ways. While an
academic display can be set in a known environment, the industrial one needs to be
as robust as possible in order to increase the overall performance of the system when
is used by a real world user [11].

Taking these issues, in the scientific literature three well-defined development trends
can be seen. The first development trend focuses on the use of images to cluster hand
gestures, highlighting the cameras as a common sensor that can be found in a great number
of electronic devices nowadays [12], allowing to identify hand gestures both in static and
dynamic environments, as well as in real time [13]. The main source of information in
this kind of classification is images, which is why large data sets of pictures are taken,
most of them containing multiple hands from different subjects, waving different signs and
gestures, regardless of whether the model sorts static or dynamic movements [14]. The
main data that it needs are images, either if it is a sequence of them (Dynamic movement
classification) or just one of them (Static movement classification) [15], but there is an even
lower level approach to this particular data set: Images are large matrices composed of
RGB (Red, Green, Blue) pixel data. Then these pixels are the basic structural and functional
units of an image. That is why some studies dig even deeper in to this kind of data and
add depth to the image composition. Such grids are formed with RGB-D pixels [16,17].
This can be accomplished by using commercially available cameras such as the ones that
can be found in a Kinect [18] or in the commercially available leap motion controller [19].
The next step in this kind of classification is to process those large grids of pixels and to
obtain a good fitting model, capable of sorting different types of gestures. Some of those
are based on Convolutional Neural Networks (CNN) [16,20], K-Nearest Neighbor (KNN)
and Bayesian Neural Network [21]. In certain cases the model descriptors are changed in
order to lower the computational demands [22,23] for real-time image processing.

The second development focus is the use of Electromyography (EMG) for hand gesture
recognition. It is important to mention that the EMG shows the electrical muscular activity
recorded by positioning electrodes on top of the muscular group of interest. In order to ob-
tain valuable information for the characterization of the hand gesture, filtering, processing
and clustering methods of EMG signal have emerged as highly relevant techniques [24].
Another batch of papers shows a lot of methods and variants, used in the literature, to
increase the rate of accuracy of the process mentioned above, starting by using a large
amount of electrodes, followed by the use of huge time resolution ADCs (Analog to digital
converters), however the real variety in literature comes when it is time to choose the
descriptors [24–26] and what algorithm to use for sorting gestures, from recurrent neural
networks (RNN) [27,28], to Hidden Markov Models [29], all the way to gesture recognition
based on Motor Unit Spike Trains (MUST) [30], nearly every algorithm has been used.
Nevertheless deep learning models have been the most accurate and reliable, RNN have
shown good results along with Long-short Term Memory (LSTM) layer in them [17,27,28].

Appl. Sci. 2022, 12, 9700 3 of 21

The third development trend, which is starting to take off, is force myography (FMG).
It is basically an alternative for EMG sensing, and it is based on the volumetric changes
of muscle fibers while they contract or distract [31]. Some researchers claim that it is
even better than EMG because it only needs force or pressure sensors attached to an
armband, and the requirements for such signals processing do not demand as many filters
or amplifiers as EMG does [29]. Here, the simple nature of both signals is different and
that is why the approaches are distinct. Whilst the EMG is an electrical signal caused by
small impulses created in the motor neurons when contracting the muscles [24], FMG is
a volume change that can be sensed by using special transducers in order to know its
magnitude. If a big picture of the process of this kind of hand gesture recognition is taken,
much would be similar to the EMG signal acquiring and clustering process. Initially the
signal is acquired by using sensors suitable for this approach. It is important to take into
consideration the force or pressure range that the transducer is able to sense [32]; then these
data are processed and lastly the gestures are classified using a various palette of algorithms
such as Linear Discriminant Analysis (LDA) [5,27] and Recurrent Neural Networks[17].

Following the three challenges and the second trend mentioned before, Recurrent
Neural Networks (RNN) emerge as promising models for gesture recognition classifiers
based on EMG signals due to their ability to identify patterns in dynamic time series; RNNs
have been widely used in different fields to forecast time series data and model energy sys-
tem behavior [30,33,34]. In the field of Human–Machine Interfaces and electromyography,
multiple studies have explored the application of RNNs in gesture recognition systems in
order to determine whether is or not suitable for gesture prediction and prosthesis control.
For example, Jabbari et al. has explored the use of stacked LSTM Recurrent Neural Net-
works for gesture recognition on amputees [35]; Samadani performed a comparative study
evaluating unidirectional and bidirectional RNNs, using both Long-short Term Memory
(LSTM) units and Gated Recurrent Units (GRU), also analyzing the effects of the attention
mechanism, Samadani found that bidirectional LSTM units with attention yielded the best
results [36]; Hu et al. proposed an attention-based hybrid CNN-RNN architecture for ges-
ture recognition, this research compared the models accuracy on different popular gesture
recognition datasets [37]; other studies like the ones presented by Zhang et al., Jiang et al.
and Simão, proposed different RNNs architectures composed of multiple stacked recurrent
layers and their comparison with other architectures such as CNN-RNN models [13,38,39].

As can be found in the literature, most of the studies use static data and online datasets
in which the data was obtained in controlled environments, however, scientific literature
has shown that models that often perform well on static data do not perform well in sys-
tems operating in real-time [40], making the results obtained only in static data misleading.
Moreover, most of the research found uses a high number of EMG channels (eight or more)
[32,35–38,41,42], which increases the computational needs and the prediction delay, making
it hard to implement those systems in embedded devices and commercial applications [5].
This research aims to propose a full hand gesture recognition system capable of predicting
different gestures in real-time operation using only four EMG channels. Concepts and design
of the acquisition system and the time domain optimum descriptor will be discussed during
the overall development of this paper, to highlight their importance in the development of the
classifier.

This paper presents a novel hybrid RNN model composed of one LSTM (Long Short-
Term Memory) layer and dense layers (fully connected layers) to classify in real-time
different hand gestures using only four EMG channels. The model achieved an accu-
racy 99% in the training and validation stages in the recognition of five hand gestures
performed with static data. On the other hand, the proposed model was implemented on
a personal computer that received the EMG data from a custom made EMG acquisition
armband. The model achieved an accuracy of 87 ± 7% during real-time testing, proving to
be suitable and scalable for real-time prosthesis control. The real-time tests revealed chal-
lenges that only occur during real-time operation, giving insights about possible solutions
to this challenges to further optimize the system.

Appl. Sci. 2022, 12, 9700 4 of 21

This article is structured as follows, Section 2 presents the methodology used to define
the experimental set up of EMG system, the algorithm choosing and theoretic support are
brought up during this section. Section 3 shows the main results obtained form the tests
carried out by the system previously described; and a final section shows the conclusions
(Section 4), setting ground for future work.

2. Methodology

Due to the complexity that frames the recognition of hand gesture in real time, this
section presents a novel methodology and the steps followed to develop an integrated
system for gesture recognition, showing key concepts that allow the implementation of a
Recurrent Neural Network with LSTM and dense layers.

2.1. Experimental Set-Up and Data Acquisition

In order to set up a hand gesture classifier model, a recording of EMG signals from
five different gestures was performed, which can be seen in Figure 1. These gestures were
selected based on basic daily hand patterns, including two of the fundamental grasping
motions, the power grip (Figure 1b) and the pinch grip (Figure 1c), which is a precision
handling maneuver [43].

(a)
(b)

(c) (d) (e)
Figure 1. Gestures: (a) Open hand, (b) Power grip, (c) Pinch grip, (d) Point to, (e) Rock you.

The EMG data was acquired using a custom four-channel EMG armband [44]. The
EMG armband acquired the EMG signal in each channel with dry electrodes, then it condi-
tioned the signal so a microcontrollers ADC could read it and finally it sended packages
containing the four channels information via serial communication. The data of the four
EMG channels were received by a personal computer (PC) in which the preprocessing and
development of the model were performed.

Each gesture was recorded for 20 s with a sampling frequency of 1 KHz, allowing
to obtain 20,000 samples per gesture. The sampling frequency was selected following
the Nyquist sampling theorem, considering a maximum frequency for the EMG signal of
500 Hz [45,46]; it was also taken into consideration the computational cost of acquiring the
four EMG channels and the maximum serial transmission speed of the microcontroller. An
adequate selection of the sampling frequency is key to acquire all the signal components
and perform a better mapping of the signal with the proposed classifier.

The acquired samples were divided into 100 windows of 200 samples; collecting a total
of 500 examples to build the dataset. The 200 samples window was selected based on a lit-
erature review on hand prosthesis requirements and EMG window length selection; where
a prosthesis requires an acting speed of 500 ms or less, in order to work smoothly [47–50].
Taking into consideration that the sample time is 1 ms, 200 sample windows allow an
actuation speed of around 200–300 ms considering a serial communication with the com-
putational model, which is within the required speed; moreover, researchers have found
that window lengths of 200 ms or more allow to have reduced classification errors when
working with EMG signals [45,51].

The dataset was randomly shuffled and then split into two parts: 80% of the shuffled
dataset was used for training, and the remaining 20% was used as a validation set to
perform hyper-parameter tuning and validation of the training.

Appl. Sci. 2022, 12, 9700 5 of 21

It is important to note that the acquisition of the EMG signals was done following all
the ethical guidelines set by law and the institution. The data was taken from eight test
subjects with an age range between 20 and 30 years. All participants were healthy people.
The experiments were approved by EIA University Ethical Committee (Code P201912-04),
and also an informed consent was obtained from the participants.

2.2. Data Preprocessing

Once the EMG data were acquired, the four EMG signals were preprocessed so they
could be used as inputs to the proposed model. The preprocessing is a fundamental step
when working with EMG signals, since raw EMG signals are random and difficult to
interpreter, the preprocessing step allows to extract valuable information to the raw EMG
signal This information then can be used as input data to a classifier. For this step an EMG
feature extraction process is generally conducted. According to scientific literature there
are many known features of EMG signals [3]. However, research on EMG signal processing
showed that there is not a single best feature extraction process or formula, and that it
largely depends on the data and required characteristics of the system [52].

With this in mind, the preprocessing step conducted in this research was mainly
focused on smoothing the signal and removing the unuseful noise of it, leaving the feature
extraction for the proposed neural model [53,54]. The preprocessing method applied to
the signals can be seen in Figure 2. In this process, initially the mean of the signal is
subtracted in order to center it at zero mean; then, a rectification step is performed in
which the absolute value is applied to the zero mean signal, this is a useful step during
the preprocessing of the EMG signal [46]; then, a moving average filter was applied in
order to reduce the noise of the signal [13] and to obtain its envelope, which is an useful
characteristic when working with neural network models; finally the signal was normalized
between 0 and 1 as recommended in the Deep Learning literature [55].

Mean
Subtraction

Raw
EMG

Signal

Absolute
Value

Moving
Average

Fi lter (SMA)
Normalization

Processed
EMG

Signal

Figure 2. Data processing block diagram.

In general, the moving average is the most common filter in digital signal processing
(DSP) due to its ease of implementation. In spite of its simplicity, the moving average filter
is optimal for reducing random noise while retaining the signal, making it an outstanding
filter for time domain encoded signals [56], thus allowing to obtain useful information
about the EMG signal in the time domain, while keeping the computational cost low. Its
formula is given by Equation (1).

y(i) =
1
M

M−1

∑
j=0

x(i− j) (1)

For the moving average filter, a total of 20 delays for the filter period N was selected.
This period allowed to smooth the signal reducing the noise, making it easier for the
proposed LSTM model to identify the signal patterns that represent a hand gesture. Figure 3
shows the steps of the signal pre-processing for a window of 200 samples.

Appl. Sci. 2022, 12, 9700 6 of 21

0 25 50 75 100 125 150 175 200
Samples

375

400

425

450

475

500

525

550

A
D

C
 A

m
pl

itu
de

(a)

0 25 50 75 100 125 150 175 200
Samples

100

75

50

25

0

25

50

75

(b)

0 50 100 150 200
Samples

0

20

40

60

80

100
Absolute EMG
Filtered EMG

(c)

0 50 100 150 200
Samples

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 3. EMG 200 samples window processing. (a) Raw EMG data in 200 samples window; (b) EMG
window after mean subtraction; (c) EMG window after absolute value and moving average filter;
(d) Filtered and normalized EMG window.

2.3. Recurrent Neural Network (RNN) Model

To perform a hand gesture classification in real-time based on the pre-processed EMG
signals, a novel Recurrent Neural Network (RNN) model of LSTM type was proposed.
The RNN structure with LSTM configuration has been found to be a good architecture
for the identification of temporal patterns in time series [57]. In general many researchers
found that the RNNs have the ability to retain information making it an excellent approach
for time series applications [58]. In this context, the RNN proposed in this research has a
hybrid architecture composed of dense layers wrapping a recurrent layer; it has been found
that the approach where dense layers support the recurrent layer allows for an increased
performance over models that only have the recurrent layer [59,60]. The overall architecture
of the RNN can be seen in Figure 4. Each one of its layers will be explained in greater detail
in further Sections 2.3.1 and 2.3.2.

Dense RNN Dense SOFTMAX
X Prediction

Figure 4. Recurrent neural network general architecture block diagram.

Figure 5 shows the basic structure of the recurrent layer for the proposed model.
Here, each input X is composed of one sample of each EMG channel in an specific time t;
where Tx is the length of the window that represent a hand gesture to classify (Tx = 200);
and a represents the activation values passed in each time instant from one recurrent unit
to the next one. These activation values a are propagated thru the network capturing

Appl. Sci. 2022, 12, 9700 7 of 21

dependencies between the different time steps and then the last activation a〈Tx〉 is used to
calculate the output of the network.

RNN Cell RNN Cell RNN Cell RNN Cell...

Figure 5. Basic RNN network.

The implementation of the proposed model and its training was done in Python
using the Tensorflow library due to the fast and efficient way that this library gives in the
implementation of deep learning models. However, in order to have a clear understanding
of the models architecture, the next section presents the mathematical definitions for each
component of the network.

2.3.1. Dense Layers

The dense layer represents the processing units that integrates a classic deep learning
model. In the scientific literature it is common to find models that use linear functions
to map an input to an specific output, however, in the case of signal processing where a
specialized treatment of noise must be performed, such as when working with EMG signals
as is done in this research, the literature recommends the use of activation functions of the
hyperbolic tangent type. The vectorized implementation of the dense layer can be seen
in Equation (2).

a〈l〉 = tanh(W〈l〉a〈l−1〉 + b〈l〉); a〈0〉 = X (2)

where:

a〈t−1〉 represents the previous layer activations. In the case of the first layer, they are equal
to the input X which contains the value of each EMG channel.
W〈l〉 represents the current layer weights.
b〈l〉 represents the current layer bias.

2.3.2. Long Short-Term Memory (LSTM) Layer

The recurrent layer is made of Long Short-term Memory (LSTM) units, which is
one of the state of the art units used in RNNs due to its capacity to memorize long term
dependencies. Studies have shown that LSTM units outperform other state of the art
recurrent units in complex dataset [61–64], making them a reliable choice for the recurrent
layer architecture. The structure of a single LSTM unit can be seen in Figure 6.

Equations (3)–(8) show the vectorized implementation of each one of the items that
make up the LSTM structure.

c̃〈t〉 = tanh(Wc[a〈t−1〉, X〈t〉] + bc) (3)

Γ〈t〉i = tanh(Wi[a〈t−1〉, X〈t〉] + bi) (4)

Γ〈t〉f = tanh(W f [a〈t−1〉, X〈t〉] + b f) (5)

Γ〈t〉o = tanh(Wo[a〈t−1〉, X〈t〉] + bo) (6)

c〈t〉 = Γ〈t〉i ∗ c̃(t) + Γ〈t〉f ∗ c〈t−1〉 (7)

a〈t〉 = Γ〈t〉o ∗ tanh(c〈t〉) (8)

Appl. Sci. 2022, 12, 9700 8 of 21

where:

X〈t〉 is an input vector containing the value of each EMG channel or the activation values
of the previous dense layer in time t.
a〈t−1〉 represents the activations of the LSTM units in the previous time t− 1.
c〈t−1〉 represents the memory values in the previous time t− 1; a〈t〉 are the activations in
the current time t.
c〈t〉 are the new memory values for time t.
Wx represents the LSTM unit weights for each gate and bx represents the LSTM unit bias
for each gate.

It is important to note that [a〈t−1〉, X〈t〉] is a matrix form by the concatenation of the
previous time activations a〈t−1〉 and the current inputs X〈t〉.

Forget
gate

Update
gate

Output
gate

tanh

tanh

LSTM Cell

Figure 6. LSTM Cell structure.

The output layer integrates a SOFTMAX activation function to classify which gesture
is being performed. The SOFTMAX activation function is one of the most widely used
functions for multi-class classification problems because of its performance in predicting
the probability of each class [55,65,66]. The SOFTMAX function predicts the probability of
a class Cj given an input X as shown in Equation (9). Its mathematical expression can be
seen in Equation (10).

ŷj = P(Cj|X) (9)

ŷj =
tj

∑C
j=1 tj

; tj = eaj (10)

where:

ŷj is the output probability for the class j.
C is the total number of classes that are being predicted.
aj represents the linear combination of the weights and the previous layer activations, and
can be defined as aj = Wa〈l−1〉.

Its important to note that the SOFTMAX output layer has the the same units or nodes
as the number of classes that are being predicted.

2.4. Model Optimization

Once the model is defined, the next step was to select a cost function in order to
optimize it through training and obtain the desired results in the classifier. In general, when

Appl. Sci. 2022, 12, 9700 9 of 21

using an output layer with a SOFTMAX activation function, a categorical cross entropy loss
function L(ŷ, y) is selected, which allows optimizing the cost function J (W, b) that sums
the loss over the training examples. The categorical cross entropy loss allows a correct
penalization of incorrect predictions and improve the performance in multi-class classifica-
tion problems compared with other loss functions like the mean squared error (MSE). The
categorical cross entropy loss and the cost function are shown in Equations (11) and (12).

L(ŷ, y) = −
C

∑
j=1

yjlog(ŷj) (11)

J (W, b) =
1
m

m

∑
i=1
L(ŷ, y) (12)

where:

ŷj correspond to the models predicted probability for class j.
yj represents the correct class (label) of the training example.
C is the total number of classes and m is the number of training examples in the mini batch.

It is important to note that the model was optimized with a mini batch gradient descent
strategy. The batch size was set during the hyper-parameter tuning process along with
the number of training epochs (Training iterations). The optimization algorithm will be
explained in greater detail in the next paragraph.

In order to minimize the cost function J (W, b), it is necessary to update the weights
W and biases b of each layer. This must be done by an optimization algorithm such as
gradient descent. In this research, the Adaptive Moment Estimation ADAM [67] algorithm
was selected; that is, a combination of Gradient Descent With Momentum and Root Mean
Square Propagation (RMSProp). The ADAM optimization algorithm is considered to be
one of the best optimization algorithms to train neural networks [68–70].

2.4.1. Hyperparameter Tuning

One of the key steps during the model training or model optimization, is the process
known as hyper-parameter tuning. The hyper-parameter are values used to control the
learning of the model, for example the model architecture, the number of training epochs
(Training iterations), the learning rate α, among others. This process is performed with the
objective of obtaining an optimal performance of the model [71–73], and correct issues like
high bias and high variance.

The fundamental problem of hyper-parameter tuning consists in finding the sets of hyper-
parameter λ that minimize the generalization error E(Dtrain ,Dval)∼DV(L,Aλ, Dtrain, Dval) of
a machine learning algorithm A given a data set D (Divided in training Dtrain and valida-
tion Dval). Where the hyper-parameters λ belong to the configuration space ∧ and V is the loss
function of the algorithmA parametrized by λ (Aλ). Equation (13) shows the mathematical
expression of this optimization problem [71].

λ∗ = argmin
λ ∈ ∧

E(Dtrain ,Dval)∼DV(L,Aλ, Dtrain, Dval) (13)

The literature has proposed many techniques to address the problem of hyper-para
meter tuning. The most widely used are: manual search, in which the hyper-parameters
are tuned by hand with an iterative process; grid search, in which a finite set of values for
the defined hyper-parameters are specified and then the combination of these values is
evaluated; and random search [74], which follows the same principle of grid search but the
set of values for the hyper-parameters is set randomly [71,73–75].

In this research, manual hyper-parameter tuning was performed due to its simplicity
and low computational cost. This optimization was done by changing the following hyper-
parameters: the learning rate α, the batch size, the number of training epochs and the model

Appl. Sci. 2022, 12, 9700 10 of 21

architecture. With the future work in mind, in which the model might be embedded in
a micro-controller to make the system portable; the architecture of the model started as
simple as possible and the it was increased with more layers and hidden units in order to
achieve the desired performance. The results of this process can be seen in greater detail
in Section 3.1.

2.5. Metrics

Once the model is trained, it is important to define a way to determine its performance,
this is when performance metrics come to play. There are many metrics to indicate the
performance of a model, most of them based on the confusion matrix, which contains the
values of true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN), values that come in handy to calculate these metrics.

This research evaluated the performance of the gesture classifier using two metrics
commonly used in the literature [76]. The first one was the accuracy, which can be mathe-
matically defined as shown in Equation (14).

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

As Equation (14) shows, the accuracy measures how much the model is correctly
predicting on the entire data-set and represents the probability that a prediction made by
the model is correct. Although this is an easily interpretable measure, it comes with the
issue that it does not consider the data-set class distribution and gives the same weight
to each prediction, which tends to hide strong classification errors for classes with few
examples, since those classes are less relevant compared to the biggest ones, thus, this
metric can be easily misinterpreted and give a false sense of performance for the model.
This downside in this metric, generally occurs when the model is trained or validated with
imbalanced data-sets in which some classes have fewer examples than other classes.

To solve the aforementioned disadvantage in the accuracy metric, a second metric
is proposed that allows to validate the performance of the model; the proposed metric
is the Macro F1-Score (multi-class version of the F1-Score), which can be interpreted as a
harmonic mean of the model precision and recall. It is important to note that, considering
the gesture classifier has multiple classes, it is necessary to average the precision and recall
across all classes in order to calculate the Macro F1-Score. Equations (15)–(17) shows the
necessary calculations to find the metric.

Precisionj =
TPj

TPj + FPj

Macro Precision =
∑C

j=1 Precisionj

C

(15)

Recallj =
TPj

TPj + FNj

Macro Recall =
∑C

j=1 Recallj

C

(16)

Macro F1-Score = 2
(

Macro Precision ∗Macro Recall
Macro Precision + Macro Recall

)
(17)

As Equations (15)–(17) show, the precision and recall are calculated for each class and
then averaged across the C classes of the classifier.

The Macro F1-Score is useful to support the accuracy metric and validate the model
performance even if the data-set is imbalanced. As mentioned earlier, the F1-Score requires
the model precision, which is a measure of the model’s quality. It indicates if the model
returns more relevant predictions (TP) than irrelevant ones (FP); on the other hand, the
F1-Score also requires the model recall, which is a measure of the model’s quantity. It

Appl. Sci. 2022, 12, 9700 11 of 21

indicates the capacity of the model to return most of the relevant predictions (TP) without
considering if irrelevant predictions are also returned. With this in mind, the F1-Score, being
the harmonic mean between the precision and recall, gives equal weight to both metrics.
Thus if the F1-Score is high, both metrics will also be high, more relevant predictions and
among all positive predictions most of them are relevant. Moreover, considering that the
F1-Score is based on the average metrics for each class, it gives the same weight to all
classes, taking them all into consideration independently if some classes have less examples
than other classes, thus, giving a better estimate of the model performance.

2.6. Experimental Validation

In order to analyze and evaluate the proposed model two main phases were per-
formed. An initial phase where the model was trained and tuned according to the concepts
mentioned in Section 2.4; and a second phase where the best performing models of the first
phase, were tested in real time gesture classification. Both experimental stages validated
the model performance using the metrics seen in Section 2.5.

In the first phase, training and tuning, the training/validation data-set was constructed
as mentioned in the experimental set-up (Section 2.1. Once the data sets were formed, the
next step was to train and tune the model, for this, a hyper-parameter tuning process was
performed (Section 2.4.1). In this process, a total of six different LSTM-RNN architectures
were proposed following the general architecture presented in Section 2.3; in this part,
the LSTM-RNN architecture was increased in size in each one of the models, the first
three proposed model consisted in only one LSTM layer and the last three were hybrid
models composed of Dense and LSTM layers; this was done in order to increase the size
of the network gradually until an optimal performance architecture was found, aiming to
find a good trade off between model size and performance; this trade off is a key part to
embedding the model into a micro-controller in the future. During the hyper-parameter
tuning, a manual search was used to set the learning rate α, the batch size and the number
of training epochs. In this first stage, the trained models were evaluated with the metrics
proposed in Section 2.5. For a model to be considered for the second phase (real time
validation), it was required that it had a training accuracy ≥98% as well as a training
F1-Score ≥98%; the model must also hve a difference ≤1% between training and validation
for both the accuracy and F1-Score in order for it to not suffer from high variance.

In a second phase, a real time validation was carried out. This validation is a fun-
damental step, because it allows to identify flaws in the gesture recognition system and
measure the performance of the model dynamically. To tackle this, the candidate LSTM-
RNN models selected in the previous phase were evaluated in four sessions using real time
EMG acquisition using the EMG armband, in this sessions each gesture was performed
for 20 s. Taking into consideration the possible reduction in accuracy due to changes in
the EMG armband position, thus, changes in the data distribution, the candidate models
(pre-trained) were re-trained after the initial training phase using data of another two
EMG recording sessions, where the EMG armband was taken off and put back on the arm
between sessions. Each session the EMG armband was put approximately in the same
position; this was done in order to take into account the variations in data distribution due
to the small changes in the EMG armband position.

For this last phase, the re-trained models were evaluated using the metrics proposed
in Section 2.5. In this phase, one of the candidate models was selected as the final LSTM-
RNN gesture classifier. The conditions for the selection of this model were that it had an
accuracy and F1-Score ≥ 80%. It is important to note that the real time target metrics are
lower compared to the training/validation targets, because in this phase the sensitivity of
the EMG acquisition armband and its position on the arm, which varies across different
real time recording sessions, are variables that have an impact on the performance of the
algorithm [40,77–79].

Appl. Sci. 2022, 12, 9700 12 of 21

3. Results and Discussion

This section presents the research results based on the methodology presented in
Section 2. The results are presented in three parts; Section 3.1 presents the training and
hyper-parameter tuning of the gesture classifier, the performance across testing and valida-
tion sets; Section 3.2, presents the performance of the candidate models during real-time
testing, and Section 3.3 presents the selected model, its architecture and detail performance
during training and testing.

3.1. Recurrent Neural Network (RNN) Model Training

As mentioned in Section 2.4.1, multiple network configurations were proposed in
order to find an optimal LSTM-RNN architecture for the classifier. A total of six LSTM-RNN
models were trained, Figure 7 shows the learning curves of the six LSTM-RNN models,
presenting their loss during the training process. It is important to note, that during the
manual search in the hyper-parameter tuning process, it was found that setting the learning
rate α to 0.0001, the batch size to 64 and the number of training epochs to 1000, allowed a
better performance and stability during training and validation.

0 200 400 600 800 1000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

Figure 7. Evolution of different LSTM-RNN architectures losses during the training training process.

Analyzing Figure 7 it can be seen how models 1, 2 and 3 under-perform when com-
pared to the rest of the LSTM-RNN models. It can also be noted how models 2 and 3
present high instability during training, thus making it difficult for them to converge to
an optimal minimum; this instability can be due to their inability to generalize and learn
the patterns in the data. In contrast, models 4, 5 and 6 presented stable convergence to
a minimum in the loss function, especially model 6, which had the most stable training
process and its loss value was the lowest of all models.

The final performance of the LSTM-RNN models across the training and validation
sets can be seen in Table 1. This table contains in its first column the LSTM-RNN model
number; the second column presents the architecture of the LSTM-RNN model indicating
its layers and number of units following the format <layer name (number o f units)>; the
third and fourth column presents the final accuracy and macro F1-Score on the training
set, and the fifth and sixth column presents the final accuracy and macro F1-Score on the
validation set.

As Table 1 shows, models 1 and 2 under-performed (have high bias or Under-fitting)
when compared to the rest of the LSTM-RNN models, they also suffered high variance
(Over-fitting), thus, making them not suitable for the classifier. In the case of model 3, even
though it presented an accuracy superior to 95%, it was not close to the accuracy presented
by models 4, 5 and 6. This can also be validated looking at the macro F1-Score. Conversely,
models 4, 5 and 6 presented an accuracy superior to 98% across both training and validation

Appl. Sci. 2022, 12, 9700 13 of 21

sets. It was the same case for their macro F1-Score; making them suitable for testing the
classifier in real time.

Table 1. LSTM-RNN models performance in training and validation sets during the hyperparame-
ter tuning.

Model Architecture
Training Validation

Accuracy F1-Score Accuracy F1-Score

1 LSTM (8) 0.6575 0.6173 0.6000 0.5392

2 LSTM (16) 0.9075 0.9068 0.8500 0.8360

3 LSTM (32) 0.9700 0.9700 0.9600 0.9589

4
Dense (8)
LSTM (16)
Dense (8)

0.9850 0.9849 0.9900 0.9894

5
Dense (16)
LSTM (16)
Dense (16)

0.9875 0.9874 0.9800 0.9798

6
Dense (32)
LSTM (16)
Dense (32)

0.9925 0.9925 0.9900 0.9896

3.2. Real Time Testing

Once models 4, 5 and 6 were selected as candidates for the gesture classifier, real
time testing was performed according to the proposed validation in Section 2.6. Tables 2
and 3 show the accuracy and F1-Score of the selected models obtained in different real time
testing sessions along with their standard deviation (σ), Table 4 shows the summary of
Tables 2 and 3.

Table 2. Accuracy of LSTM-RNN candidate models during real time testing across four different
acquisition sessions.

Model
Accuracy in Session

Average SD (σσσ)
1 2 3 4

4 0.7500 0.8443 0.8521 0.7456 0.7980 0.0581

5 0.8724 0.7455 0.7895 0.8406 0.8120 0.0559

6 0.8640 0.9660 0.7979 0.8640 0.8729 0.0694

Table 3. F1-Score of LSTM-RNN candidate models during real time testing across four different
acquisition sessions.

Model
F1-Score in Session

Average SD (σσσ)
1 2 3 4

4 0.6555 0.7548 0.8023 0.7054 0.7295 0.0632

5 0.8720 0.7465 0.7854 0.8401 0.8110 0.0559

6 0.8526 0.9660 0.7377 0.8473 0.8509 0.0932

Looking at Table 4 it can be seen that LSTM-RNN model 6 performed the best among
the candidates during the real time application of the classifier. It is important to note that
this model ended up being extremely sensitive. Looking at Tables 2 and 3 it can be seen that
the models vary their performance across different acquisition sessions. This sensitivity
was caused by the variation in the data distribution across training/validation and real
time testing sessions, this change in data distribution is mainly caused by variations in

Appl. Sci. 2022, 12, 9700 14 of 21

the EMG armband location; this model sensitivity to position variations of the acquisition
device is one of the current challenges when working with EMG signals and real time EMG
classifiers [40,77–79]. In order to try to solve this, the three candidate models were fed
with more data and trained again for 150 epochs, aiming to make the models more robust
and more capable of generalizing to new data; however, this approach failed and the three
models presented similar accuracy to the one shown in Table 4.

Table 4. LSTM-RNN candidate models performance summary during real time classification.

Model Accuracy F1-Score

4 0.7980 ± 0.0581 0.7295 ± 0.0632

5 0.8120 ± 0.0559 0.8110 ± 0.0559

6 0.8729 ± 0.0694 0.8509 ± 0.0932

3.3. Selected Model Training/Validation and Real Time Testing Details

According to the results showed in Sections 3.1 and 3.2, the LSTM-RNN model that
achieved the best performance was model 6. This is because of all models, it presented
the best performance across training, validation and real-time testing. It also proved to be
more stable during training and the more capable generalizing new data. Figure 8 shows
the training process of this particular LSTM-RNN model. This figure includes both the
training and validation loss across the 1000 training epochs. As can be seen in the figure,
both curves converge to approximately to the same value, meaning that the model does
nt suffer from high variance (over-fitting) on training and validation data. It also does
not suffer from high bias (Under-fiting) because of its 99% accuracy; however, taking in
consideration the results and conclusions found in Section 3.2, it is important to note that
the model does suffer from high variance on training/validation and real time testing data.
This high variance is caused by the difficulty in reproducing the same armband location
when acquiring the EMG signals across different testing sessions.

The selected LSTM-RNN architecture can be seen in Figure 9. As proposed in the
methodology the model is based on recurrent neural networks and is composed of two
dense layers, one recurrent LSTM layer and an output layer with SOFTMAX activation
function; the model has a total of 4005 parameters and ended up with a file size of 89 KB.

0 200 400 600 800 1000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Loss
Validation Loss

Figure 8. Loss in training and validation of selected LSTM-RNN model.

Appl. Sci. 2022, 12, 9700 15 of 21

Señal
EMG

Sustracción de
la media

Valor
absoluto

Filtro de medias
moviles

Normalización

Señal
EMG
Procesada

tanh

a

t

t - 1

t - 2
...

t - Tx

t

t - 1

t - 2
...

t - Tx

Input
4

Dense
32

LSTM
16

Dense
32

Dense
5

Output
5

tanh tanh softmax

a a aRaspberry Pi
3B

PWM

GPIO3

GPIO5

GPIO7

GPIO11

GPIO13

GPIO15

GPIO19

GPIO21

GPIO23

GPIO29

GND

VDD

COM
PORT

Out1

Out2

VCC GND C
o
n
t1

C
o
n
t2

ENTRADAS

Lm298
Out1

Out2

Out1

Out2

VCC GND C
o
n
t1

C
o
n
t2

ENTRADAS

Lm298
Out1

Out2

Out1

Out2

VCC GND C
o
n
t1

C
o
n
t2

ENTRADAS

Lm298
Out1

Out2

Hk15138

In
1

In
2

Hk15138

In
1

In
2

Hk15138

In
1

In
2

Hk15138

In
1

In
2

Hk15138

In
1

In
2

6V 6V

6V

5V

TXRX

RXTX

Conversor
FTDI

Manilla
EMG

USB

Figure 9. Selected LSTM-RNN architecture.

Figure 10 shows the prediction of the LSTM-RNN model on the training/validation
recording. Figure 10a presents the network output probability of a class Cj given an
input X. Figure 10b shows the actual predicted class and the actual label of the example.
The recording was set to have the gestures in order.

0 100 200 300 400 500
Examples

0.0

0.2

0.4

0.6

0.8

1.0

P(
C

|X
)

Class 0
Class 1
Class 2
Class 3
Class 4

(a)

0 100 200 300 400 500
Examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
C

la
ss

Prediction
Label

(b)

Figure 10. Predictions of the selected LSTM-RNN model in training and validation sets. (a) Probability
of class; (b) Class predictions.

Figure 11 shows the predictions of the LSTM-RNN model on the four real time testing
sessions. This figure presents the network output probability of a class Cj given an input X
and shows the actual predicted class and the actual label of the example in the four real
time testing sessions. The recording was set to have the gestures in order.

Figures 10 and 11 allow to get a better intuition about the results shown in Tables 2 and 3.
Figure 10 shows how the output probability of the LSTM-RNN model is stable when predicting
each class, except for some wrong predictions. This was expected because the LSTM-RNN
model achieved a 0.99 accuracy in the training/validation data-sets. In contrast, Figure 11
shows a more erratic behavior in the output probability of the LSTM-RNN model during real
time classification, especially in classes with more wrong predictions. It can be seen how the
LSTM-RNN model tends to fail in classifying one of the classes even tho it generalized and
predicts correctly the other four, this figure shows how the model tends to fail either in class 1
or class 4. Figure 11 depicts the sensitivity of the model when the acquisition system is taken
off and put back on, thus its varying accuracy across different acquisition sessions.

Based on the above, an ideal model should exhibit a behavior in the output probability
as the one seen in Figure 10, however, when implementing the system in real-time, there
are variables that change the model performance across different acquisition sessions. As
mentioned earlier, small changes in the EMG acquisition device and noise in the EMG
signal are the ones with grater impact and cause the model to start confusing classes as
Figure 11 shows.

Appl. Sci. 2022, 12, 9700 16 of 21

0 100 200 300 400 500
Examples

0.0

0.2

0.4

0.6

0.8

1.0

P(
C

|X
)

Class 0
Class 1
Class 2
Class 3
Class 4

(a)

0 100 200 300 400 500
Examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
la

ss

Prediction
Label

(b)

0 100 200 300 400 500
Examples

0.0

0.2

0.4

0.6

0.8

1.0

P(
C

|X
)

Class 0
Class 1
Class 2
Class 3
Class 4

(c)

0 100 200 300 400 500
Examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
la

ss

Prediction
Label

(d)

0 100 200 300 400 500
Examples

0.0

0.2

0.4

0.6

0.8

P(
C

|X
)

Class 0
Class 1
Class 2
Class 3
Class 4

(e)

0 100 200 300 400 500
Examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
la

ss

Prediction
Label

(f)

0 100 200 300 400 500
Examples

0.0

0.2

0.4

0.6

0.8

1.0

P(
C

|X
)

Class 0
Class 1
Class 2
Class 3
Class 4

(g)

0 100 200 300 400 500
Examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
la

ss

Prediction
Label

(h)

Figure 11. Predictions of the selected LSTM-RNN model in real time classification across different
sessions. (a) P(Cj|X) in session 1; (b) Class predictions in session 1; (c) P(Cj|X) in session 2; (d) Class
predictions in session 2; (e) P(Cj|X) in session 3; (f) Class predictions in session 3; (g) P(Cj|X) in
session 4; (h) Class predictions in session 4.

Appl. Sci. 2022, 12, 9700 17 of 21

3.4. Model Comparison

This work presented a LSTM-RNN model composed of an LSTM layer wrapped by
dense layers, capable of performing in real-time. Table 5 shows the comparison of the
proposed LSTM-RNN model with other state-of-the-art RNN models found in the litera-
ture; the comparison included the number of EMG channels used, which is an important
parameter when performing real-time operation, the classifier type and the test accuracy
achieved by the classifier. It is important to note that most of these studies tested the model
on static data and not in real-time.

Table 5. Comparison of the proposed LSTM-RNN model with state-of-the-art RNN models found
in literature.

Work Channels Classifier Test Accuracy

Samadani [36] 12 Stacked LSTM 89.50%

Jabbari et al. [35] 8 BILSTM-AT 91.40± 3.00%

Zhang et al. [35] 8 Stacked GRU 89.60%

Jiang et al. [39] 8 Stacked LSTM 97.10%

Xie et al. [41] 16 LSTM 78.13%

He et al. [42] 12 LSTM-Dense 75.50%

Hu et al. [37] 10 CNN-RNN 87.00%

Ours 4 LSTM-Dense 87.29± 6.94%

As can be seen in Table 5 the proposed LSTM-RNN model was capable of achieving
state-of-the-art performance while using a much simpler model and less number of EMG
channels (only four EMG channels); reducing both the complexity of the model and the
number of EMG channels is key when working on a classifier that must be embedded
in a portable device such as a hand prosthesis or a wearable Human–Machine Interface.
Another key takeaway from the comparison is that most of the mentioned state-of-the-art
RNN models where tested only on static data and online datasets, which does not guarantee
the performance in real-time operation; in contrast, the proposed LSTM-RNN model was
tested in real-time and achieved a comparable accuracy score with other state-of-the-art
RNN models.

4. Conclusions and Future Work

The proposed LSTM-RNN model for gesture classification proved to be a suitable
approach for gesture recognition using EMG signals. The LSTM-RNN model was able to
obtain high accuracy during training and validation phase; indicating that the model was
able to learn the patterns in the EMG signals and generalize on new data. Furthermore, it is
important to highlight that the model is small enough to be embedded in a micro-controller,
which is fundamental to implement it for a commercial or industrial application. The
proposed LSTM-RNN model was able to perform at a similar level of accuracy than other
state-of-the-art RNN models while reducing the model complexity and the number of EMG
channels, increasing its potential to be embedded and its commercial scalability. With this
in mind, the proposed model shows promising results for its industrial or commercial appli-
cation, even though further improvements must be made to achieve this development state,
particularly in the EMG acquisition system. This research allowed to go beyond static data
classification, giving valuable insights regarding the challenges of real time classification.

It was found that the reduced performance during real-time testing was due to the
high sensitivity of the model to small changes in the EMG armband position and noise
present in the signal when acquiring the EMG. However, although the model accuracy
varies with different postures of the acquisition system, it is still able to generalize to new
data. With this in mind, having a better EMG acquisition device and a better acquisition

Appl. Sci. 2022, 12, 9700 18 of 21

process, where noise and variations in position across different sessions are minimized,
will probably improve the model performance considerably, without the need of changing
the model.

In general, the proposed approach using deep neural models its effective for finding
patterns in stochastic signals like EMG signals, making deep learning models a great tool
for gesture recognition tasks based on this type of signals. It is important to note that in
order to build an effective and robust gesture recognition system, not only is important
to build and optimize a good model, it is also fundamental to acquire quality data and
perform a good pre-processing of it. It is only when an optimal point between data and
model is found that the overall system can find the best performance.

In future work the EMG acquisition armband will be upgraded with the objective of
acquiring more data and improving its quality; new pre-processing and feature extraction
techniques will be tried, aiming to reduce the system sensitivity to noise in the EMG signal
and variations in the acquisition devise; moreover, the gesture recognition model will be
optimized with the new data and it will be embedded in a microcontroller in order to
control an active hand prosthesis using different hand gestures.

Author Contributions: The authors’ contributions to the achievement of the research are as follows:
Model design, conceptualisation, computational modelling and Analysis of Results, A.T.-O., J.J.-T.;
Analysis of Results, processing and review, J.C.T., A.P., A.L.-G.; Analysis of Results and review R.A.C.
All authors have read and agreed to the published version of the manuscript.

Funding: The project is funded under the program of the Minister of Education and Science titled
“Regional Initiative of Excellence” in 2019–2023, project number 018/RID/2018/19, the amount
of funding PLN 10 788 423,16. The research was funded by the Universidad EIA grant number
CO12021002 and Universidad Iberoamericana grant number Ibero DCI-002847.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of EIA University (protocol code
P201912-04 and date of approval)approved by EIA University Ethical Committee (Code P201912-04).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, J.C.T. (juan.tejada@eia.edu.co), upon reasonable request.

Acknowledgments: This research was supported by the Universidad EIA (CO12021002) and Univer-
sidad Iberoamericana (Ibero DCI-002847 and Convocatoria 14 DINV). Thanks to Universidad EAFIT
and WSB University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haria, A.; Subramanian, A.; Asokkumar, N.; Poddar, S.; Nayak, J.S. Hand Gesture Recognition for Human Computer Interaction.

In Proceedings of the Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2017; Volume 115, pp. 367–374. [CrossRef]
2. Lv, Z.; Xiao, F.; Wu, Z.; Liu, Z.; Wang, Y. Hand gestures recognition from surface electromyogram signal based on self-organizing

mapping and radial basis function network. Biomed. Signal Process. Control. 2021, 68, 102629. [CrossRef]
3. Shi, W.T.; Lyu, Z.J.; Tang, S.T.; Chia, T.L.; Yang, h.Y. A bionic hand controlled by hand gesture recognition based on surface EMG

signals: A preliminary study. Biocybern. Biomed. Eng. 2018, 38, 126–135. [CrossRef]
4. Pisharady, P.K.; Saerbeck, M. Recent methods and databases in vision-based hand gesture recognition: A review. Comput. Vis.

Image Underst. 2015, 141, 152–165. [CrossRef]
5. Arunraj, M.; Srinivasan, A.; Arjunan, S.P. A Real-Time Capable Linear Time Classifier Scheme for Anticipated Hand Movements

Recognition from Amputee Subjects Using Surface EMG Signals. IRBM 2020. [CrossRef]
6. Boyali, A.; Hashimoto, N. Spectral Collaborative Representation based Classification for hand gestures recognition on elec-

tromyography signals. Biomed. Signal Process. Control. 2016, 24, 11–18. [CrossRef]
7. Jaber, H.A.; Rashid, M.T.; Fortuna, L. Online myoelectric pattern recognition based on hybrid spatial features. Biomed. Signal

Process. Control. 2021, 66, 102482. [CrossRef]
8. Mendes Souza, G.C.; Moreno, R.L. Netlab MLP - Performance Evaluation for Pattern Recognition in Myoletric Signal. In

Proceedings of the Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2018; Volume 130, pp. 932–938. [CrossRef]

http://doi.org/10.1016/j.procs.2017.09.092
http://dx.doi.org/10.1016/j.bspc.2021.102629
http://dx.doi.org/10.1016/j.bbe.2017.11.001
http://dx.doi.org/10.1016/j.cviu.2015.08.004
http://dx.doi.org/10.1016/j.irbm.2020.08.003
http://dx.doi.org/10.1016/j.bspc.2015.09.001
http://dx.doi.org/10.1016/j.bspc.2021.102482
http://dx.doi.org/10.1016/j.procs.2018.04.092

Appl. Sci. 2022, 12, 9700 19 of 21

9. Kowdiki, M.; Khaparde, A. Automatic hand gesture recognition using hybrid meta-heuristic-based feature selection and
classification with Dynamic Time Warping. Comput. Sci. Rev. 2021, 39, 100320. [CrossRef]

10. Jochumsen, M.; Waris, A.; Kamavuako, E.N. The effect of arm position on classification of hand gestures with intramuscular
EMG. Biomed. Signal Process. Control. 2018, 43, 1–8. [CrossRef]

11. Cifuentes, J.; Pham, M.T.; Moreau, R.; Boulanger, P.; Prieto, F. Medical gesture recognition using dynamic arc length warping.
Biomed. Signal Process. Control. 2019, 52, 162–170. [CrossRef]

12. Licsár, A.; Szirányi, T. User-adaptive hand gesture recognition system with interactive training. Image Vis. Comput. 2005,
23, 1102–1114. [CrossRef]

13. Simão, M.; Neto, P.; Gibaru, O. EMG-based online classification of gestures with recurrent neural networks. Pattern Recognit. Lett.
2019, 128, 45–51. [CrossRef]

14. Just, A.; Marcel, S. A comparative study of two state-of-the-art sequence processing techniques for hand gesture recognition.
Comput. Vis. Image Underst. 2009, 113, 532–543. [CrossRef]

15. Salim, U.T.; Dawwd, S.A. Systolic hand gesture recognition/detection system based on FPGA with multi-port BRAMs. Alex. Eng.
J. 2019, 58, 841–848. [CrossRef]

16. Li, Y.; Wang, X.; Liu, W.; Feng, B. Deep attention network for joint hand gesture localization and recognition using static RGB-D
images. Inf. Sci. 2018, 441, 66–78. [CrossRef]

17. Ovur, S.E.; Zhou, X.; Qi, W.; Zhang, L.; Hu, Y.; Su, H.; Ferrigno, G.; De Momi, E. A novel autonomous learning framework
to enhance sEMG-based hand gesture recognition using depth information. Biomed. Signal Process. Control. 2021, 66, 102444.
[CrossRef]

18. Huang, Y.; Yang, J. A multi-scale descriptor for real time RGB-D hand gesture recognition. Pattern Recognit. Lett. 2021, 144, 97–104.
[CrossRef]

19. Ameur, S.; Ben Khalifa, A.; Bouhlel, M.S. A novel hybrid bidirectional unidirectional LSTM network for dynamic hand gesture
recognition with Leap Motion. Entertain. Comput. 2020, 35, 100373. [CrossRef]

20. Pinzón-Arenas, J.O.; Jiménez-Moreno, R.; Rubiano, A. Percentage estimation of muscular activity of the forearm by means of
EMG signals based on the gesture recognized using CNN. Sens. Bio-Sens. Res. 2020, 29, 100353. [CrossRef]

21. Suk, H.I.; Sin, B.K.; Lee, S.W. Hand gesture recognition based on dynamic Bayesian network framework. Pattern Recognit. 2010,
43, 3059–3072. [CrossRef]

22. Lazarou, M.; Li, B.; Stathaki, T. A novel shape matching descriptor for real-time hand gesture recognition. Comput. Vis. Image
Underst. 2021, 210, 103241. [CrossRef]

23. Escobedo Cardenas, E.J.; Chavez, G.C. Multimodal hand gesture recognition combining temporal and pose information based on
CNN descriptors and histogram of cumulative magnitudes. J. Vis. Commun. Image Represent. 2020, 71, 102772. [CrossRef]

24. Sun, Y.; Xu, C.; Li, G.; Xu, W.; Kong, J.; Jiang, D.; Tao, B.; Chen, D. Intelligent human computer interaction based on non redundant
EMG signal. Alex. Eng. J. 2020, 59, 1149–1157. [CrossRef]

25. Noce, E.; Dellacasa Bellingegni, A.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Guglielmelli, E.; Zollo, L. EMG and ENG-envelope
pattern recognition for prosthetic hand control. J. Neurosci. Methods 2019, 311, 38–46. [CrossRef]

26. Fatimah, B.; Singh, P.; Singhal, A.; Pachori, R.B. Hand movement recognition from sEMG signals using Fourier decomposition
method. Biocybern. Biomed. Eng. 2021, 41, 690–703. [CrossRef]

27. Barron, O.; Raison, M.; Gaudet, G.; Achiche, S. Recurrent Neural Network for electromyographic gesture recognition in
transhumeral amputees. Appl. Soft Comput. J. 2020, 96, 106616. [CrossRef]

28. Topalović, I.; Graovac, S.; Popović, D.B. EMG map image processing for recognition of fingers movement. J. Electromyogr. Kinesiol.
2019, 49, 102364. [CrossRef]

29. Premaratne, P.; Yang, S.; Vial, P.; Ifthikar, Z. Centroid tracking based dynamic hand gesture recognition using discrete Hidden
Markov Models. Neurocomputing 2017, 228, 79–83. [CrossRef]

30. Chen, C.; Yu, Y.; Ma, S.; Sheng, X.; Lin, C.; Farina, D.; Zhu, X. Hand gesture recognition based on motor unit spike trains decoded
from high-density electromyography. Biomed. Signal Process. Control. 2020, 55, 101637. [CrossRef]

31. Jiang, S.; Gao, Q.; Liu, H.; Shull, P.B. A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition.
Sens. Actuators A Phys. 2020, 301, 111738. [CrossRef]

32. Jiang, X.; Merhi, L.K.; Xiao, Z.; Menon, C. Exploration of Force Myography and surface Electromyography in hand gesture
classification. Med. Eng. Phys. 2017, 41, 63–73. [CrossRef]

33. Boulila, W.; Ghandorh, H.; Khan, M.A.; Ahmed, F.; Ahmad, J. A novel CNN-LSTM-based approach to predict urban expansion.
Ecol. Inform. 2021, 64, 101325. [CrossRef]

34. Saleh, N.M.; Zaini, N.; Latip, M.F.A. Recurrent neural networks-gated recurrent unit for behaviour analysis and prediction
modelling to trigger high energy-consumption alert. In Proceedings of the 2019 IEEE 9th International Conference on System
Engineering andvTechnology (ICSET), Shah Alam, Malaysia, 7 October 2019; pp. 493–498. [CrossRef]

35. Jabbari, M.; Khushaba, R.N.; Nazarpour, K. EMG-Based Hand Gesture Classification with Long Short-Term Memory Deep
Recurrent Neural Networks. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBS), Montreal, QC, Canada, 20–24 July 2020; pp. 3302–3305. [CrossRef]

http://dx.doi.org/10.1016/j.cosrev.2020.100320
http://dx.doi.org/10.1016/j.bspc.2018.02.013
http://dx.doi.org/10.1016/j.bspc.2019.04.022
http://dx.doi.org/10.1016/j.imavis.2005.07.016
http://dx.doi.org/10.1016/j.patrec.2019.07.021
http://dx.doi.org/10.1016/j.cviu.2008.12.001
http://dx.doi.org/10.1016/j.aej.2019.05.018
http://dx.doi.org/10.1016/j.ins.2018.02.024
http://dx.doi.org/10.1016/j.bspc.2021.102444
http://dx.doi.org/10.1016/j.patrec.2020.11.011
http://dx.doi.org/10.1016/j.entcom.2020.100373
http://dx.doi.org/10.1016/j.sbsr.2020.100353
http://dx.doi.org/10.1016/j.patcog.2010.03.016
http://dx.doi.org/10.1016/j.cviu.2021.103241
http://dx.doi.org/10.1016/j.jvcir.2020.102772
http://dx.doi.org/10.1016/j.aej.2020.01.015
http://dx.doi.org/10.1016/j.jneumeth.2018.10.004
http://dx.doi.org/10.1016/j.bbe.2021.03.004
http://dx.doi.org/10.1016/j.asoc.2020.106616
http://dx.doi.org/10.1016/j.jelekin.2019.102364
http://dx.doi.org/10.1016/j.neucom.2016.06.075
http://dx.doi.org/10.1016/j.bspc.2019.101637
http://dx.doi.org/10.1016/j.sna.2019.111738
http://dx.doi.org/10.1016/j.medengphy.2017.01.015
http://dx.doi.org/10.1016/j.ecoinf.2021.101325
http://dx.doi.org/10.1109/ICSENGT.2019.8906493
http://dx.doi.org/10.1109/EMBC44109.2020.9175279

Appl. Sci. 2022, 12, 9700 20 of 21

36. Samadani, A. Gated Recurrent Neural Networks for EMG-Based Hand Gesture Classification. A Comparative Study. In
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Honolulu,
HI, USA, 18–21 July 2018; pp. 1–4. [CrossRef]

37. Geng, W.; Hu, Y.; Wong, Y.; Wei, W.; Du, Y.; Kankanhalli, M. A novel attention-based hybrid CNN-RNN architecture for
sEMG-based gesture recognition. PLoS ONE 2018, 13, e0206049. [CrossRef]

38. Zhang, Z.; He, C.; Yang, K. A Novel Surface Electromyographic Signal-Based Hand Gesture Prediction Using a Recurrent Neural
Network. Sensors 2020, 20, 3994. [CrossRef] [PubMed]

39. Jiang, Y.; Song, L.; Zhang, J.; Song, Y.; Yan, M. Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals.
Sensors 2022, 22, 5855. [CrossRef] [PubMed]

40. Bi, L.; Feleke, A.; Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for
human-robot collaboration. Biomed. Signal Process. Control. 2019, 51, 113–127. [CrossRef]

41. Xie, B.; Li, B.; Harland, A. Movement and Gesture Recognition Using Deep Learning and Wearable-sensor Technology. ACM Int.
Conf. Proc. Ser. 2018, 26–31. [CrossRef]

42. He, Y.; Fukuda, O.; Bu, N.; Okumura, H.; Yamaguchi, N. Surface EMG Pattern Recognition Using Long Short-Term Memory
Combined with Multilayer Perceptron. In Proceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Honolulu, HI, USA, 18–21 July 2018; pp. 5636–5639. [CrossRef]

43. Nordin, M.; Frankel, V.H. Basic Biomechanics of the Musculoskeletal System, 4th ed.; Lippincott Williams & Wilkins: Baltimore, MD,
USA, 2012; p. 454.

44. Toro Ossaba, A.; Jaramillo Tigreros, J.J.; Tejada Orjuela, J.C. Open Source Multichannel EMG Armband design. In Proceedings of
the 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena, Colombia, 4–6 November
2020. [CrossRef]

45. Asogbon, M.G.; Samuel, O.W.; Jiang, Y.; Wang, L.; Geng, Y.; Sangaiah, A.K.; Chen, S.; Fang, P.; Li, G. Appropriate Feature Set
and Window Parameters Selection for Efficient Motion Intent Characterization towards Intelligently Smart EMG-PR System.
Symmetry 2020, 12, 1710. [CrossRef]

46. Merletti, R.; Farina, D. Surface Electromyography: Physiology, Engineering and Applications; Wiley: Hoboken, NJ, USA, 2016;
pp. 1–570. [CrossRef]

47. Cipriani, C.; Controzzi, M.; Carrozza, M.C. Objectives, criteria and methods for the design of the SmartHand transradial
prosthesis. Robotica 2010, 28, 919–927. [CrossRef]

48. Ventimiglia, P.; Padir, T.; Schaufeld, J. Design of a Human Hand Prosthesis. A Major Qualifying Project Report. Bachelor’s Thesis,
Faculty of the Worcester Polytechnic Institute, Worcester, MA, USA, 2012.

49. Belter, J.T.; Segil, J.L.; Dollar, A.M.; Weir, R.F. Mechanical design and performance specifications of anthropomorphic prosthetic
hands: A review. J. Rehabil. Res. Dev. 2013, 50, 599–618. [CrossRef]

50. Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature review on needs of upper
limb prosthesis users. Front. Neurosci. 2016, 10, 209. [CrossRef]

51. Smith, L.H.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. Determining the optimal window length for pattern recognition-based
myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Trans. Neural Syst. Rehabil.
Eng. 2011, 19, 186–192. [CrossRef]

52. Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst.
Appl. 2012, 39, 7420–7431. [CrossRef]

53. Moin, A.; Zhou, A.; Rahimi, A.; Benatti, S.; Menon, A.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; Burghardt, F.; et al. An EMG
Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier. In Proceedings
of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018.

54. Jaramillo-Yánez, A.; Benalcázar, M.E.; Mena-Maldonado, E. Real-time hand gesture recognition using surface electromyography
and machine learning: A systematic literature review. Sensors 2020, 20, 2467. [CrossRef]

55. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
56. Smith, S.W. The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed.; California Technical Publishing: San Diego, CA,

USA, 1999; p. 640.
57. Weerakody, P.B.; Wong, K.W.; Wang, G.; Ela, W. A review of irregular time series data handling with gated recurrent neural

networks. Neurocomputing 2021, 441, 161–178. [CrossRef]
58. Wang, Y.; Perry, M.; Whitlock, D.; Sutherland, J.W. Detecting anomalies in time series data from a manufacturing system using

recurrent neural networks. J. Manuf. Syst. 2020. [CrossRef]
59. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
60. Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current status and future

directions. Int. J. Forecast. 2021, 37, 388–427. [CrossRef]
61. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.

arXiv 2014, arXiv:1412.3555.
62. Józefowicz, R.; Zaremba, W.; Sutskever, I. An Empirical Exploration of Recurrent Network Architectures. In Proceedings of the

32nd International Conference on International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015.

http://dx.doi.org/10.1109/EMBC.2018.8512531
http://dx.doi.org/10.1371/JOURNAL.PONE.0206049
http://dx.doi.org/10.3390/s20143994
http://www.ncbi.nlm.nih.gov/pubmed/32709164
http://dx.doi.org/10.3390/s22155855
http://www.ncbi.nlm.nih.gov/pubmed/35957417
http://dx.doi.org/10.1016/j.bspc.2019.02.011
http://dx.doi.org/10.1145/3268866.3268890.
http://dx.doi.org/10.1109/EMBC.2018.8513595
http://dx.doi.org/10.1109/CIIMA50553.2020.9290291
http://dx.doi.org/10.3390/sym12101710
http://dx.doi.org/10.1002/9781119082934
http://dx.doi.org/10.1017/S0263574709990750
http://dx.doi.org/10.1682/JRRD.2011.10.0188
http://dx.doi.org/10.3389/fnins.2016.00209
http://dx.doi.org/10.1109/TNSRE.2010.2100828
http://dx.doi.org/10.1016/j.eswa.2012.01.102
http://dx.doi.org/10.3390/s20092467
http://dx.doi.org/10.1016/j.neucom.2021.02.046
http://dx.doi.org/10.1016/j.jmsy.2020.12.007
http://dx.doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.1016/j.ijforecast.2020.06.008

Appl. Sci. 2022, 12, 9700 21 of 21

63. Mangal, S.; Joshi, P.; Modak, R. LSTM vs. GRU vs. Bidirectional RNN for script generation. arXiv 2019, arXiv:1908.04332.
64. Yang, S.; Yu, X.; Zhou, Y. LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an

Example. In Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI),
Shanghai, China, 12–14 June 2020; pp. 98–101. [CrossRef]

65. Mohammed, A.A.; Umaashankar, V. Effectiveness of Hierarchical Softmax in Large Scale Classification Tasks. In Proceedings of
the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India,
19–22 September 2018; pp. 1090–1094. [CrossRef]

66. Sharma, S.; Sharma, S.; Athaiya, A. Activation Function in Neural Networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310–316.
[CrossRef]

67. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on
Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

68. Jais, I.K.M.; Ismail, A.R.; Nisa, S.Q. Adam Optimization Algorithm for Wide and Deep Neural Network. Knowl. Eng. Data Sci.
2019, 2, 41. [CrossRef]

69. Sakinah, N.; Tahir, M.; Badriyah, T.; Syarif, I. LSTM with Adam Optimization-Powered High Accuracy Preeclampsia Classification.
In Proceedings of the IES 2019—International Electronics Symposium: The Role of Techno-Intelligence in Creating an Open
Energy System Towards Energy Democracy, Surabaya, Indonesia, 27–28 September 2019; pp. 314–319. [CrossRef]

70. Défossez, A.; Bottou, L.; Bach, F.; Usunier, N. A Simple Convergence Proof of Adam and Adagrad. arXiv 2020, arXiv:2003.02395.
71. Feurer, M.; Hutter, F. Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 3–33. [CrossRef]
72. Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter Optimization for Machine Learning Models Based

on Bayesian Optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [CrossRef]
73. Li, W.; Wing, W.W.; Wang, T.; Pelillo, M.; Kwong, S. HELP: An LSTM-based approach to hyperparameter exploration in neural

network learning. Neurocomputing 2021, 442, 161–172. [CrossRef]
74. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
75. Quemy, A. Two-stage optimization for machine learning workflow. Inf. Syst. 2020, 92, 101483. [CrossRef]
76. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756.
77. Igual, C.; Pardo, L.A.; Hahne, J.M.; Igual, J. Myoelectric Control for Upper Limb Prostheses. Electronics 2019, 8, 1244. [CrossRef]
78. Singh, R.M.; Chatterji, S. Trends and Challenges in EMG Based Control Scheme of Exoskeleton Robots—A Review. Int. J. Sci.

Eng. Res. 2012, 3, 933–940.
79. Ison, M.; Artemiadis, P. The role of muscle synergies in myoelectric control: Trends and challenges for simultaneous multifunction

control. J. Neural Eng. 2014, 11, 051001. [CrossRef]

http://dx.doi.org/10.1109/IWECAI50956.2020.00027
http://dx.doi.org/10.1109/ICACCI.2018.8554637
http://dx.doi.org/10.33564/IJEAST.2020.v04i12.054
http://dx.doi.org/10.17977/um018v2i12019p41-46
http://dx.doi.org/10.1109/ELECSYM.2019.8901536
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://dx.doi.org/10.11989/JEST.1674-862X.80904120
http://dx.doi.org/10.1016/j.neucom.2020.12.133
http://dx.doi.org/10.1016/j.is.2019.101483
http://dx.doi.org/10.3390/electronics8111244
http://dx.doi.org/10.1088/1741-2560/11/5/051001

	Introduction
	Methodology
	Experimental Set-Up and Data Acquisition
	Data Preprocessing
	Recurrent Neural Network (RNN) Model
	Dense Layers
	Long Short-Term Memory (LSTM) Layer

	Model Optimization
	Hyperparameter Tuning

	Metrics
	Experimental Validation

	Results and Discussion
	Recurrent Neural Network (RNN) Model Training
	Real Time Testing
	Selected Model Training/Validation and Real Time Testing Details
	Model Comparison

	Conclusions and Future Work
	References

