	[bookmark: _GoBack]
WSB University Branch/Department of Jaworzno

	Field of study: Computer Science

	Subject: Fundamentals of object-oriented programming

	Educational profile: practical

	Level of education: undergraduate studies

	Number of hours
per semester
	1
	2
	3
	4

	
	I
	II
	III
	IV
	V
	VI
	VII

	Full-time studies
(w/w/lab/pr/e)*
	
	16w / 20lab / 25Pr
	
	
	
	
	

	Part-time studies
(w/æw/lab/pr/e)
	
	12w / 16lab / 25Pr
	
	
	
	
	

	LANGUAGE OF INSTRUCTION
	Polish

	LECTURER

	Dr.-Ing. Dawid Aleksander, Prof. AWSB, M.Sc. Popławski Krzysztof

	FORM OF ACTIVITIES

	Lecture, laboratory, project, consultation

	SUBJECT OBJECTIVES

	The aim of the course is to learn object-oriented thinking, analysis, design and programming. The aim of the course is to provide knowledge of object-oriented programming using the Java platform. It includes the presentation of basic concepts and issues present in object-oriented programming. The lecture introduces the concepts of class and object and issues related to encapsulation, inheritance and polymorphism. The basics of object-oriented design are discussed. Formalisms for writing object-oriented designs and programs are introduced. The lab focuses on writing small programs to illustrate further issues presented in the lecture and teaches you to describe your solutions in the accepted design notation.

	Reference to learning outcomes
	Description of learning outcomes
	Means of verification of the effect
learning

	Directional effect
	PRK
	
	

	NEWS

	INF_W02
	P6S_WG
	The student knows and understands the concepts and principles of the object-oriented approach to software development
	Written examination

	INF_W02
	P6S_WG
	The student knows and understands the object-oriented elements and mechanisms used in programming languages.
	Written examination

	INF_W05
	P6S_WG
	The student knows and understands the techniques and tools involved in analysing and designing software in an object-oriented approach
	Written examination

	INF_W02
	P6S_WG
	The student knows the basic syntax of at least one of the object-oriented programming languages (C++, Java, C#).
	Individual consultations of the instructor with students performing specific tasks. Conducting a colloquium on the syntax and semantics of one of the object-oriented programming languages. Checking the degree of independent completion of the credit project - questions concerning the source code of the software.

	INF_W02
	P6S_WG
	Has knowledge of the mechanisms that allow object-oriented programming using the chosen programming language.
	Individual consultations of the instructor with students performing specific tasks. Conducting a colloquium on the syntax and semantics of one of the object-oriented programming languages. Checking the degree of independent completion of the credit project - questions concerning the source code of the software.

	SKILLS

	INF_U06
	P6S_UW

	The student is able to write a program using the object-oriented approach
	Analytical tasks

	INF_U10
	P6U_UW
	Students will be able to use appropriately selected programming environments in the process of designing and verifying the operation of computer applications.
	Analytical tasks

	INF_U10
INF_U14

	P6S_UW

	The student is able to design and implement an information system using object-oriented techniques
	Analytical tasks

	INF_U13
	P6S_UW

	Students will be able to critically analyse how software (including software consisting of multiple components and processes, also distributed) works, and be able to identify and formulate
specification of simple computer programming tasks.
	Project tasks

	INF_U03

	P6S_UW
	The student makes skilful use of
Can make use of available sources on programming libraries and language constructs in developing object-oriented programmes. Can make use of ready-made basic methods and classes and use them in the programmes he/she writes
	At each stage of the problem-solving process, the tutor checks the concrete results and directs further work.

	INF_U02
INF_U10
	P6S_UW

	Creates simple programs in the selected language (C++, C#, Java) independently using the basics of object-oriented methodology. Can also design, implement and describe created software in a team of 2-3 people.
	At each stage of the problem-solving process, the tutor checks the concrete results and directs further work.

	INF_U10
	P6S_UW
	The student is able to install a basic working environment depending on the chosen object-oriented language (C++, C#, Java). He/she also has the ability to comment the code using the chosen IT tool of the project he/she creates. Compiles and runs programmes.
	Checking of the various stages of the student's work and acceptance of the final result - the final credit project.

	SOCIAL COMPETENCES

	INF_K01
	P6U_K
	The student is prepared to critically evaluate his/her knowledge and perceived content concerning the achievements of computer science, to recognise the importance of knowledge in solving cognitive and practical problems, and to seek expert advice when encountering difficulties in solving a problem independently.
	Project assignments, classroom observation

	Student workload (in teaching hours 1h =45 minutes)**

	Stationary
attendance at lectures = 16
participation in exercises = 20
preparation for exercise = 29
lecture preparation = 15
exam preparation = 10
implementation of project tasks = 25
e-learning =
Pass/examination = 4
other (consultation) = 6
TOTAL: 125h
Number of ECTS credits: 5
including in practical classes: 3
	Part-time
attendance at lectures = 12
participation in exercises = 16
preparation for exercise = 30
lecture preparation = 22
exam preparation = 10
implementation of project tasks = 25
e-learning =
Pass/examination = 4
other (consultation) = 6
TOTAL: 125h
Number of ECTS credits: 5
including in practical classes: 3

	PREREQUISITES

	Fundamentals of computer programming. Ability to think abstractly. Knowledge of the basics of computer science and computer use. Basic algorithmics (data structures and simple algorithms) and syntax basics of a structured (e.g. C, Pascal) or object-oriented language (e.g. C++, C#, Java).

	SUBJECT CONTENT
(broken down into
face-to-face and e-learning classes)

	Content delivered in a face-to-face format:
Lecture:
· Modelling using UML.
· Debugging - eliminating errors in an object-oriented program.
· Basic elements of the Java language
· Operators and expressions
· Methods and encapsulation, polymorphism
· Classes and objects, encapsulation, inheritance.
· Input/output operations, data formatting.
· Exceptions and error handling.
· Multi-threaded programmes.
· Design patterns and their implementation in Java.
· Key concepts and principles of the object-oriented approach in different programming languages: class, object, constructor, destructor; creation, deletion, initialisation of objects; operator overloading; inheritance; virtual functions.
· Linking, aggregation and composition of objects.
· Class composition versus role delegation. Implementation issues and methods. Use of interfaces, abstract classes.
· Abstraction, static and dynamic polymorphism, data encapsulation, types of...
· Analysis and object-oriented design

Lab:
· Introduction to object-oriented programming
· The concept of class, encapsulation
· Fundamentals of object-oriented programming (C++, C#, Java)
· Dynamic memory management in C++ - the new and delete operators
· Access: public, protected and private to fields and methods
· the keyword "this" - its meaning and use
· Static methods and fields
· Fixed values, fixed objects and fixed object methods
· 9 Creation and destruction of objects - constructors and destructors (for C++ language)
· Object storage methods: arrays, template classes (C++), collections (Java)
· Selected elements of libraries
· Overloading and obfuscation of methods
· Inheritance and polymorphism
· 14. interfaces (Java language)

	LITERATURE
COMPULSORY

	· E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns. Elements of reusable object-oriented software , Helion , 2021.
· J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, The Java Language Specification, Java SE 8 Edition, Addison-Wesley Professional, 2014.
· C++ Language. A compendium of knowledge, Stroustrup B., Helion 2014
· Grębosz J.: Symfonia C++: Programowanie w języku C++ zorientowane obiektowo, vol. 1, "Edition 2000" Oficyna Kallimach Publishing House, Kraków 2010
· Grębosz J.: Symfonia C++: Programowanie w języku C++ zorientowane obiektowo, vol. 2, "Edition 2000" Oficyna Kallimach Publishing House, Kraków 2010
· Thinking in Java, Eckel B., Helion 2006
· Thinking in C++, vol.1, Eckel B., Helion 2004

	LITERATURE
SUPPLEMENTARY
(including min. 2 items in English; book publications or articles)
	· https://docs.oracle.com/en/java/
· https://docs.oracle.com/javase/tutorial/
· G. Booch, J. Rumbaugh, I. Jacobson, UML user's guide, Wydawnictwa Naukowo Techniczne, 2002.
· Craig Larman, UML and design patterns. Object-oriented analysis and design and the iterative model of application development. Wydanie III, Helion 2011
· Big Java: Early Objects, C. S. Horstman, 7th Edition, Wiley 2019
· Effective Java, J. Bloch, 3rd Edition, Addison-Wesley Professional 2017
· Josuttis N. M.: C++. The standard library, Helion 2014
· Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14, S. Meyers, O'Reilly Media 2014
· Prata S.: C++ language. Szkoła programowania, Helion 2012
· Bertrand Meyer, Object-Oriented Programming, Helion 2005
· Matt Weisfeld, Object-oriented thinking in programming. 4th ed. Helion 2014.
· Java. A programmer's compendium., H. Schildt, 11th ed., Helion 2020
· Java. A guide for beginners, H. Schildt, 11th ed., Helion 2015
· Java Fundamentals, Cay S. Horstmann, Gary Cornell, 9th ed., Helion 2014

	TEACHING METHODS
(broken down into
face-to-face and e-learning classes)
	In direct form:
· Multimedia lecture with presentation of many examples in different programming languages.
· Discussion of the topic of the laboratory activity using a blackboard and multimedia projector
· Presentation of the programming technique for the problem discussed at the beginning of the class using a multimedia projector
· Supervise students' independent work and give them guidance in developing the program code created and discussed during the first part of the meeting
· Project tasks, practical examples, case studies

	LEARNING AIDS
	Onlinewsb platform, MS Teams application, multimedia projector, auxiliary Jetbrains

	PROJECT
(insofar as it is carried out as part of a course module)
	Project objective: To learn fundamental ways of modelling real-world problems and implementing them using object-oriented programming techniques.

Project theme: Application built on the basis of classes and the mechanism of inheritance and polymorphism; e.g. a system for handling staff, a document database, etc.

Project form: Interactive computer program with its source code and basic documentation in the form of a class diagram.

	FORM AND CONDITIONS OF PASSING
(broken down into
face-to-face and e-learning classes)
	A prerequisite for obtaining credit is obtaining a positive grade in all forms of assessment provided for in the course syllabus, taking into account the quantitative assessment criteria defined in the Framework System of Student Assessment at the WSB Academy.

· participation in laboratory activities,
· Colloquium in the form of a test,
· creation, presentation and defence of own project prepared in groups.

Independent performance on a computer of a task requiring knowledge of the object-oriented approach to software development in any object-oriented language.

* W - lecture, ćw - exercise, lab - laboratory, pro - project, e-learning

